
Peer-to-Peer Systems
Exercise 5
Published: 18.12.2014
Presentation date: 15.01.2015

Peer-to-Peer Systems – Exercise
Winter Term 2014/2015

General Remarks

Welcome to the exercise for the lecture Peer-to-Peer Systems.
Please follow the general remarks regarding the organization of the exercise.
- The lecture’s website is to be found here:
http://tsn.hhu.de/teaching/lectures/2014ws/p2p.html

- For further inquiries, please contact the lecturer under the following email ad-
dress: graffi@cs.uni-duesseldorf.de

Problem 5.1 - Implementing Chord in Peerfact-
Sim.KOM

In this exercise we investigate the structured peer-to-peer overlay Chord in de-
tail as it is one of the best known, and most educational overlays. In order
to answer the following questions, please download and install the p2p simu-
lator PeerfactSim.KOM from http://www.tsn.hhu.de/teaching/lectures/
2014ws/p2p.html. You also have to download and install graphviz http:
//www.graphviz.org/ and gnuplot http://www.gnuplot.info/ to visualize
the results. (To install graphviz in Debian/Ubuntu you can simply type sudo
apt-get install graphviz in the terminal).

a) Preparations
The first part of this exercise is to get familiar with Chord and graphviz, a simple
software to visualize the implemented overlay.

- Install graphviz, e.g. by typing in sudo apt-get install graphviz in the
terminal.

1

- Run the script runEduChord.sh located in the main folder of the simulator
and investigate the outputs of the simulation. You should find the folder
graphs/ which contains graphviz files that contain information about the
positioning of different nodes in the overlay for specific points in time.
Furthermore, this folder contains a script which can be used to produce
visualizations of the overlay. Figure 1 shows the different nodes partici-
pating in the overlay as well as their successor pointers (black arrows) and
predecessor pointers (green arrows).

- The folder education/paper/ contains a paper in which Chord is described
in detail. Consider this paper for the next tasks below, especially Part
IV. CHORD PROTOCOL.

64.231.248.88

81.248.64.67

203.26.168.252

64.169.227.79

63.152.25.9

205.231.150.225

64.144.24.50

80.8.4.151

Figure 1: Chord ring visualization.

Solution:

Just do it.

b) Extension of Chord
Next, we focus on Chord’s find_successor() method which is used to find the
successor of a given identifier in the Chord ring, which is the responsible node
for the given identifier. For this task focus on the implementation of Chord
which can be found in the packages org.peerfact.impl.overlay.dht.edu.chord.*.
Class ChordNode is here the most important one since it represents a single
Chord instance that can be run on a host.

- Investigate the class ChordNode and get familiar with its methods.

- Next, consider class FindSuccessorOperation from package (...).operations.
Can you find this operation in the Chord paper? Which version of the
operation has been implemented?

- Extend the existing overlay by introducing a finger table according to the
description of Chord.

2

- Extend the existing FindSuccessorOperation so that finger entries are con-
sidered as possible next hop of the operation’s request messages (again,
consider the Chord paper).

- Investigate now the output of your simulation: describe the impact your
implementation has on the FindSuccessorOperation, especially compare
the performance of the operation before, and after your changes.

Solution:

Currently the following version of method find_successor(id) is implemented:

n.find_successor(id)
if (id ∈ (n, successor])
return successor ;

else
// forward the query around the circle
return successor .find_successor(id);

In this version, queries are only forwarded to each node’s successor. By this
means, each node which lies between a requesting node and the responsible
node for a given target id has to be traversed in order to find the successor of a
given id. Our goal is now to extend the method, so that queries are forwarded
to the closest preceding node (out of finger table) of a given target id:

n.find_successor(id)
if (id ∈ (n, successor])
return successor ;

else
n′ = closest_preceding_node(id);
return n′.find_successor(id);

We need some changes now in order to realize the use of the proposed fin-
ger table:

- Add finger table to class ChordNode: array

- On successful join event: add successor to finger table (this is needed to be
sure that at least one entry exists in the finger table)

- Add closest_preceding_node() method which returns the closest preceding
finger out of the finger table for a given target id.

3

- Change FindSuccessorOperation so that finger entries are considered as next
hops.

- Add fix_fingers() method in order to refresh finger entries periodically.

(Consider code for more information).

The effect of the finger table on lookups in Chord can be seen if we consider the
number of hops a find_successor query has to traverse until the successor of a
given target overlay id is found (compare Figures 2 and 3):

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

N
um

be
r o

f H
op

s
[a

vg
]

Time [minutes]

Hop Count

Figure 2: EduChord without finger table: number of Hops

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60

N
um

be
r o

f H
op

s
[a

vg
]

Time [minutes]

Hop Count

Figure 3: EduChord with finger table: number of Hops

c) Chord under Churn
Finally, we consider churn in the overlay and try to prevent the Chord ring from
getting affected of leaving nodes.

- Simulate the simple Chord implementation with churn.

4

- Consider the Chord paper to find a solution to stabilize the Chord ring
during churn: which solution is proposed in the Chord paper?

- Implement the proposed solution and evaluate your changes on the pro-
tocol.

Solution:

First, we have to change the parameter churn in file config/education/educhord.xml
to true.

The authors of the Chord protocol present a solution to stabilize the Chord
ring during churn:

- Instead of using only one successor per node, a list of r successors should
be used.

- The stabilize operation should be extended so that nodes send their successor
list to requesting nodes.

- Whenever a node detects its successor to be failed, it will replace its suc-
cessor by another node from the successor list.

Again we extend the current implementation:

- Add successor list to ChordNode (LinkedList).

- Add successor list to GetPredecessorResponse so that nodes retrieve the suc-
cessors list of their own successor upon stabilize operation

- Add methods to set or update the successor list and to remove successors
which are not available any more.

- If timeouts occur during stabilize operation: remove current successor and
determine new successor from given succ. list.

The effect of the successor list can be seen best if we investigate the num-
ber of failed lookups in EduChord with, and without successor list (Figures 4
and 5):

5

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

Fa
ile

d
Lo

ok
up

s
[n

um
be

r]

Time [minutes]

Failed Lookups

Figure 4: EduChord with successor list: number of failed lookups

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60

Fa
ile

d
Lo

ok
up

s
[n

um
be

r]

Time [minutes]

Failed Lookups

Figure 5: EduChord without successor list: number of failed lookups

6

